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ABSTRACT: The characteristics of tropical mesoscale convective systems (MCSs) simulated with a finer-resolution

(;50 km) version of the Geophysical Fluid Dynamics Laboratory (GFDL) AM4 model are evaluated by comparing with a

comprehensive long-term observational dataset. It is shown that the model can capture the various aspects of MCSs rea-

sonably well. The simulated spatial distribution of MCSs is broadly in agreement with the observations. This is also true for

seasonality and interannual variability over different land and oceanic regions. The simulated MCSs are generally longer-

lived, weaker, and larger than observed. Despite these biases, an event-scale analysis suggests that their duration, intensity,

and size are strongly correlated. Specifically, longer-lived and stronger events tend to be bigger, which is consistent with the

observations. The same model is used to investigate the response of tropical MCSs to global warming using time-slice

simulations forced by prescribed sea surface temperatures and sea ice. There is an overall decrease in occurrence frequency,

and the reduction over land is more prominent than over ocean.
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1. Introduction

Tropical moist convection is a fundamental process under-

lying the climate system. Under certain conditions, isolated

convective events can aggregate and grow upscale into large

clusters or even superclusters by forming mesoscale circula-

tions (Mapes and Houze 1993; Houze 2004, 2018). The re-

sulting mesoscale convective systems (MCSs) represent the

largest form of cumulonimbus clouds. Typically, MCSs consist

of active convective towers and expansive stratiform regions, a

structure that is distinct from scattered or isolated convection.

MCSs can be as large as several hundreds of kilometers and last

up to more than 24 h (Houze 2004). It has been recognized that

MCSs play an important role in redistributing heat, moisture,

and momentum (Hartmann et al. 1984; Fritsch et al. 1986;

Houze 1989). They are also responsible for producing up to

60% of the total tropical rainfall (Nesbitt et al. 2006; Yuan and

Houze 2010; Roca et al. 2014; Houze et al. 2015; Virts and

Houze 2015; Tao and Chern 2017). When the environmental

conditions are favorable, MCSs can become long-lasting

events, producing extreme precipitation (Laing and Fritsch

2000). These durable MCSs are identified to be one of the

major causes of flooding over land regions, where they are

usually accompanied by strong winds, hail, and even tornadoes

(Schumacher and Johnson 2006; Feng et al. 2018). Over the

tropical ocean, MCSs occasionally develop into tropical cy-

clones (Jeong et al. 2016). Thus, MCSs constitute an important

subject as one strives to understand and predict both the

tropical mean climate and extreme weather events.

Through a combination of field campaigns, satellite obser-

vations, cloud-resolving model (CRM) simulations, and theo-

retical development, major progresses have been made in

recent decades toward better understanding the tropical MCSs

(Rotunno et al. 1988; Houze 1989; Moncrieff 1992, 2004, 2010,

2019; Mapes and Houze 1993; Alexander and Cotton 1998;

Parker and Johnson 2000; Houze 2004; Moncrieff and Liu

2006; Tao and Chern 2017; Feng et al. 2018). However, the

capability (or lack thereof) of general circulation models

(GCMs) in simulatingMCSs has not been studied in a systematic

manner, presumably due to their relatively coarse resolution

(hundreds of kilometers). A relevant reference point is that re-

cently developedGCMswithmoderately high resolution (tenths

of kilometers) have been shown to be capable of simulating

tropical cyclone statistics (e.g., Zhao et al. 2009).

Past attempts weremade to parameterize the effect ofMCSs

in GCMs (Donner 1993; Donner et al. 2001; Mapes et al. 2006;

Moncrieff et al. 2012; Feng et al. 2018; Moncrieff 2019). The

fine-scale cumulus convection embedded in active MCSs re-

quires low-level environmental shear to interact with the cold

outflow from convective downdrafts. Yet, these parameteri-

zations are unable to account for the distinct properties of

environmental shear, and thus fail to represent the coupling

between the cumulus processes and low-level environment

realistically (Randall et al. 2016). As a consequence, GCMs,

even with parameterized mesoscale convection, have difficul-

ties in simulating the extreme weather events that are closely

associated with MCS activities (Moncrieff et al. 2017; Lin et al.

2019). In other words, the inability of GCMs to properly rep-

resent MCSs has cast into doubt their skills in simulating and

predicting weather and climate extremes. A key structural
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feature of organized moist convection is vertically tilted MCS-

like circulations (referred to as slantwise layer overturning)

that occur across scales (Moncrieff 2004, 2010). This concept

was implemented in the NCAR Community Atmosphere

Model by Moncrieff et al. (2017) as a scale-invariant moist

convective parameterization. This new paradigm adds key

mesoscale heat and momentum transport by cumulus ensem-

bles in sheared environments to traditional cumulus parame-

terization. For MCSs, by bridging the assumed gap between

cumulus and the resolved scales of motion the MCSP (meso-

scale convective system parameterization or its generalization

multiscale coherent structure parameterization) scheme com-

pletes standard cumulus parameterizations.

In this work, we analyze the tropical MCS statistics gener-

ated by a ;50-km atmospheric GCM, and apply the same

model to explore possible changes of MCS caused by global

warming. To our best knowledge, this is the first attempt to assess

the performance of aGCM in simulating the key characteristics of

tropical MCSs by comparing with a comprehensive long-term

observational dataset. The paper is organized as follows. The

observational dataset, atmosphericGCM, andMCSdetection and

tracking algorithm are described in section 2. The present-day

tropical MCS simulation and future projection are presented in

section 3. A discussion and conclusions are given in section 4.

2. Methods

a. Observational dataset

The Cloud Archive User Service (CLAUS) multisatellite

infrared brightness temperature (Tb) dataset during 1985–2008

(Hodges et al. 2000) is used to identify and track tropical MCSs

(see the detection and tracking algorithm in section 2d). This

dataset has a global latitude–longitude spatial resolution of 1/38
at a 3-h time interval, and is quality controlled to remove re-

sidual noise and satellite navigation/calibration errors. The

CLAUS Tb dataset is interpolated onto the model grids for a

fair comparison. The CERES EBAF Edition 2.8 top-of-the-

atmosphere (TOA) fluxes dataset (Loeb et al. 2018) and

NOAA interpolated outgoing longwave radiation (OLR)

dataset (Liebmann and Smith 1996) are also used for com-

parison. Besides, the Niño-3.4 index archived at https://

www.esrl.noaa.gov/psd/data/correlation/nina34.data is used to

probe the potential relationship between El Niño–Southern
Oscillation (ENSO) and MCSs. Daily precipitation from

Global Precipitation Climatology Project (GPCP) dataset

(Huffman et al. 2001) during 1997–2008 is used to explore the

MCS-related precipitation.

b. Atmospheric GCM and experimental design

A moderately high-resolution (;50 km) version of the

GFDL new atmospheric GCMAM4 [referred to as C192AM4;

see details in Zhao (2020)] is used in this study. C192 denotes

that there are 192 3 192 grid boxes in each of the six cubed-

sphere faces. The same model is also used for GFDL’s par-

ticipation in phase 6 of the Coupled Model Intercomparison

Project (CMIP6) HighResMIP project (Haarsma et al. 2016).

The original (;100 km) AM4 model (Zhao et al. 2018a,b) is

the atmospheric component of the GFDL coupled physical

climate model CM4, GFDL’s contribution to CMIP6 (Held

et al. 2019). Apart from resolution, the two models differ only

in minor details (i.e., time steps, divergence damping, and

cloud tunings) (Zhao 2020).

The C192AM4 historical simulations are driven by the ob-

served SST and sea ice conditions, greenhouse gases, and

natural and anthropogenic aerosol emissions. We use a three-

member ensemble spanning 1950–2014 (referred to as

C192AM4-PD) to evaluate the simulated tropical MCSs in the

present-day (PD) climate, which is nominally defined as 1985–

2008 to coincide with the CLAUS dataset.

In a perturbation experiment (C192AM4-FU), the CMIP5

multimodel mean SST and sea ice anomalies in the RCP8.5 fu-

ture (FU) scenario are superposed on the PD climatology. The

resulting simulation covers the period of 2015–50; years 2027–50

are compared with the PD simulation, which is of the same

duration (24 years), to assess the response of tropical MCSs.

To discern the relative roles of mean SST and SST pattern in

affecting the response, we also examine a pair of idealized

experiments, both of which are integrated for 31 years with the

first year as spinup. The control (CL) simulation (C192AM4-

CL) is forced with the 2010 climatological SST, sea ice, and

radiative forcings, while the perturbation simulation is identi-

cal except for a uniform 4-K increase in SST (C192AM4-4K).

Note that the global mean surface temperature differs by 1.2K

between C192AM4-FU and C192AM4-PD (the former minus

the latter, as is the convention throughout the paper), and by

4.5K between C192AM4-4K and C192AM4-CL. The pro-

jected changes in MCSs are normalized by their respective

global mean temperature changes.

c. Conversion from OLR to Tb

The brightness temperature Tb is not simulated directly by

the model, but can be inferred rather accurately from outgoing

longwave radiation (OLR) by the following:

8<
:
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F

,

where TF is the flux equivalent brightness temperature, s 5
5.673 1028Wm22 K24 is the Stefan–Boltzmann constant, and

a and b are empirical coefficients based on regression (Ohring

et al. 1984). We set a at 1.228 and b at21.1063 1023 K21 as in

Ellingson and Ferraro (1983). Similar relationships have been

used to calculate OLR from the AVHRR-retrieved brightness

temperature (Abel and Gruber 1979). Although the coeffi-

cients a and b vary slightly with different regression equations

as discussed in Ohring et al. (1984), the results reported here

are not sensitive to these subtle changes.

The model-simulated mean Tb is compared with the

CLAUS-observed counterpart in Fig. 1. The spatial distribu-

tions are generally in good agreement, with the values over the

vast subsiding regions higher than over the west Pacific warm

pool (WPWP). The centered pattern correlation is 0.93 (P ,
0.001)when both datasets are interpolated onto the same 18 3 18
grids. The difference plot reveals that the modeled Tb are
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overestimated to varying degrees almost everywhere in the

tropics, with the notable exception of the eastern part ofWPWP.

d. MCS detection and tracking algorithm

We adopt the automated MCS detection and tracking al-

gorithm developed by Huang et al. (2018). This two-step al-

gorithm is designed to identify MCSs based on a Tb threshold

and aminimum area coverage threshold, which are set at 233K

and 5000 km2, respectively, in this study. These threshold

values have been used extensively in previous studies

(Williams andHouze 1987; Pope et al. 2009; Goyens et al. 2012;

Fiolleau and Roca 2013). After the initial identification, a

tracking procedure is performed to link each MCS.

Conventional area-overlapping tracking assumes that the

candidate systems in consecutive timeframes belong to the

sameMCS if there is sufficient overlapping in area (15% in this

study). This is problematic for small or fast-movingMCSs since

there may not be overlapping between two timeframes. In

contrast, the algorithm used here invokes a Kalman filter ap-

proach, which proves to be an optimal estimator for the

movement of potential MCSs (Xing et al. 2009). The reader is

referred to Huang et al. (2018) for more detail about the al-

gorithm and comparison with other algorithms. All MCSs

identified and tracked over the tropics (308S–308N) are recor-

ded in sequence for each month, but the records for the first

and last months are discarded to ensure complete life cycles.

3. Results

a. Spatial distribution

The CLAUS-based time-average track density of tropical

MCSs is illustrated in Fig. 2a. The spatial distribution bears a

strong resemblance to that of tropical precipitation. This is

understandable as MCSs produce more than half of the total

tropical precipitation, as discussed in the introduction. Over ocean,

frequent occurrences of MCSs are seen over the intertropical con-

vergence zone (ITCZ) and South Pacific convergence zone

(SPCZ). The northern Indian Ocean is another region with signif-

icant presence of MCSs. Africa and South America (mainly the

Amazon) are two major land regions characteristic of intensive

MCS activities. The Maritime Continent is of special interest.

Although it is debatable whether this region is continental or

maritime (Houze et al. 2015), it clearly has more frequent MCSs

than the surrounding oceanic surface. These three regions (Africa,

South America, and the Maritime Continent) have long been

known as the key regions of deep convection and associated dia-

batic heating driving the tropical circulation (Webster 1974). The

spatial pattern present here is broadly consistent with previous

studies based on a variety of observational datasets (Yuan and

Houze 2010; Houze et al. 2015; Moncrieff et al. 2017).

The C192AM4-PD simulation captures the observed spatial

distribution of tropical MCSs reasonably well, with a centered

pattern correlation of 0.87 (P, 0.001) (Fig. 2b). All the regions

with active MCSs discussed above feature prominently in the

simulation. An inspection of the difference plot (Fig. 2c) re-

veals that the simulated distribution of MCSs over the ITCZ

and SPCZ is not as compacted as observed. As a result, the

model simulates fewer MCSs over these convergence zones,

but tends to overestimate them elsewhere over ocean. The

biases over land are not as structured, but there is a tendency to

underestimate over the Amazon and Maritime Continent and

to overestimate over Africa. Furthermore, the linkage between

orography and MCS occurrence, albeit strong in the observa-

tions, is exaggerated in the model simulation (e.g., over the

windward slopes of the Himalayas and Andes).

The track density of MCSs depends on both genesis and

duration.We shall focus on genesis here and discuss duration in

section 3c. To facilitate regional analysis, the tropics are di-

vided roughly into eight regions (as delineated by the rectangles

FIG. 1. Spatial distribution of time-average brightness temperature (K) from (a) CLAUS and

(b) C192AM4-PD for 1985–2008, and (c) the difference of (b) minus (a).
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in Fig. 2). Note that there are three regions over the Pacific (i.e.,

west, central, and east Pacific). The rationale is that the different

sectors of the Pacific basin were reported to show distinct MCS

variability (Dong et al. 2020).Oceanic grids aremaskedout for land

analysis, and vice versa. Table 1 lists the observed annual mean

genesis counts for different regions and the corresponding model

biases. (Note that the spread among the three ensemblemembers is

within a few percentage points.) The model underestimates range

from 221% to 16%, with the largest bias over the Maritime

Continent (Table 1), and the tropical mean bias is20.4%.

b. Seasonality and interannual variability

Figure 3 compares the simulated seasonal cycles of tropical

MCSs with the observations over the analysis regions. The

annul means are removed for this analysis. Overall, the model

shows considerable skills in capturing the amplitudes and

phases of the observed seasonal cycles. The positive correlation

coefficients (R) are statistically significant for six out of the eight

regions (Table 1). A notable exception is the Indian Ocean,

where the model-simulated MCSs are most active in the South

Asianmonsoon season (June–September), out of phase with the

observed seasonal cycle peaking in October–January. This is

presumably because atmosphere models forced with prescribed

SSTs are unable to capture effects of the strong air–sea coupling

over the Indian Ocean (Lau and Nath 2003).

Figure 4 concerns the interannual variability of tropical

MCS activities. The model performance varies between land

and oceanic regions. Despite its ability in reproducing the

observed interannual variability for all oceanic regions and the

Maritime Continent, the model shows no skill over Africa and

FIG. 2. Track density of tropical MCSs (number per 18 3 18 per month) based on

(a) CLAUS and (b) C192AM4-PD for 1985–2008, and (c) the difference of (b) minus (a).

Rectangles in (a) and (b) denote the different regions used for the subsequent analysis.

TABLE 1. Observed annual mean genesis counts of tropical MCSs and model biases (%), and the correlation coefficients between the

observed and simulated MCS frequencies at seasonal and interannual time scales (boldface denotes statistical significance at the 95%

confidence interval) for different regions.

Region

Genesis Correlation

Observed Model bias Seasonal Interannual

Africa 5085 6.8% 0.87 0.26

Maritime Continent 5184 221.0% 0.97 0.72

Tropical Americas 6507 25.1% 0.89 0.49

Indian Ocean 5341 22.3% 20.66 0.52

West Pacific 5755 26.1% 0.86 0.93
Central Pacific 7986 3.3% 0.71 0.64

East Pacific 4312 16.2% 0.51 0.81

Atlantic 3309 4.8% 0.91 0.58
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the tropical Americas (Table 1). This implies that the inter-

annual variability over tropical land is not driven, at least to

zeroth order, by the oceanic conditions, and may involve

complex land processes and atmosphere–land interactions.

On a related note, the ensemble mean is invariably better than

any individual ensemble member in reproducing the observed

interannual variability for every region. This is consistent with

Zhao et al. (2009) in the context of Atlantic hurricane counts,

suggesting that the genesis frequency of tropical MCSs may

have a large component that is predictable from SSTs.

The interannual variability of MCSs over west Pacific is out

of phase with that over the east Pacific. This is true for both the

FIG. 3. Observed (CLAUS; black) and simulated (C192AM4-PD; blue) seasonal cycles of tropical MCS fre-

quency (number per month) for each region. The respective annual means are subtracted. The light blue shading

denotes the spread among the three ensemble members.
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observations (R 5 20.80, P , 0.01) and the simulations

(R 5 20.71, P , 0.01). The seesaw pattern between these two

regions may be indicative of the significant role of underlying

SST patterns, especially that associated with ENSO events, in

shaping the spatial distribution of MCSs over the Pacific. One

can support this argument by correlating the observedNiño-3.4
index with the observed MCS counts over these two regions.

The correlation coefficient is 20.93 over the west Pacific and

0.72 over the east Pacific, both of which are statistically sig-

nificant at the 99.9% confidence interval.

c. Duration, intensity, and size

A key characteristic of MCSs, duration or lifetime, is tightly

linked to rainfall production. Long-lived MCSs are often ac-

companied by large accumulative precipitation, and may lead

to flood events. The spatial distribution of MCS duration is

shown in Fig. 5. The model generally captures the pattern of

the observed MCS duration but on average overestimates

the lifetime by two timeframes (;6 h). The overestimation is

especially prominent over the IndianOcean andwestern Pacific.

These long-lived oceanic MCS may be related to the over-

produced tropical cyclones in the model simulations. We then

calculate the normalized histograms of MCS duration with a

3-h interval for all regions, and find that the distribution pat-

terns are quite similar. For brevity, only the results for two

regions, namely Africa (representative of land) and the west

Pacific (representative of ocean) are presented in Fig. 6. The

model is able to reproduce the observed monotonic decrease

of probability with duration (Pope et al. 2008; Roca et al. 2017),

but is biased toward longer lifetimes. In particular, the ob-

served cumulative probability of those events lasting less than

12 h is 66% forAfrica and 60% for thewest Pacific as compared

FIG. 4. Observed (CLAUS; black) and simulated (C192AM4-PD; blue) interannual variations of tropical MCS

for each region. The respective 1985–2008 means are subtracted. The light blue shading denotes the spread among

the three ensemble members.
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to 53% for Africa and 48% for the west Pacific in the model.

We also probe the probability of long-lasting MCSs, defined as

those longer than 24 h. They account for 14% of theMCSs over

Africa and 17% over the west Pacific in the observations,

whereas the model overestimates them by a factor of 2 (23%

and 28%, respectively). The observations also hint at theMCSs

over ocean lasting long than those over land; the mean (me-

dian) duration is 12.3 (9.0) hours for Africa, which is shorter

than 14.4 (12.0) hours for the west Pacific. This land–sea con-

trast is borne out in the simulation; the simulated mean (me-

dian) duration is 17.1 (12.0) hours for Africa and 21.0 (15.0)

hours for the west Pacific.

Unlike tropical cyclone, there is no commonly adopted

definition of intensity for MCSs. Previous studies used a wide

variety of metrics such as horizontal wind, vertical wind shear,

temperature, and moisture (LeMone and Zipser 1980; McCaul

et al. 2005; Takemi 2010). This study uses Tb averaged over all

the grid points occupied by aMCS and its lifetime as a proxy of

intensity. The model captures the spatial distribution of Tb, but

overestimates it by 1.5K on average (Fig. 7). This is in line with

the expectation that a moderately high-resolution model like

the one used here cannot resolve the full strength of MCSs.

Such an underestimation is also evident in the probability

density distribution of intensity (Fig. 8). The simulations are

FIG. 5. Spatial distribution ofMCSduration (h) from (a)CLAUSand (b) C192AM4-PD for

1985–2008, and (c) the difference of (b) minus (a). Crosses indicate where the sample size is

smaller than 100.

FIG. 6. Observed (CLAUS; black) and simulated (C192AM4-PD; blue) normalized histograms of the duration of

tropical MCS for (a) Africa and (b) west Pacific. The mean and median (h) are listed.
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more skewed than the observations toward higher Tb values.

This is particularly true for Africa, where the simulated dis-

tribution is substantially narrower than observed.

The identifiedMCSs in the observations and simulations are

averaged into the same 58 3 58 grid boxes before computing

sizes averaged during lifetime. This coarse graining procedure

is designed to optimize statistical robustness by balancing the

competing needs to reduce noise through averaging and to

retain enough samples. Comparatively large MCSs are ob-

served over central Africa, the Bay of Bengal, the west Pacific,

and South America (Fig. 9). This overall pattern is borne out in

themodel simulation, albeit with large overestimation over the

west Pacific. The probability density distributions of MCS size

over Africa and the west Pacific are shown in Fig. 10. Both

regions are characterized by a distinct peak at around 10 000–

20 000 km2, accompanied by a long tail. About 62% of the

observed MCS are smaller than 50 000 km2. The model re-

produces the gamma-shaped distributions. The simulated

mean and median sizes are comparable to the observations

over Africa, but are nearly twice over the west Pacific. The

cumulative probability of MCSs smaller than 50 000 km2 is

58% in the simulation.

Although the three attributes are evaluated separately in the

above analysis, it is widely known that they are tightly

FIG. 7. Spatial distribution of MCS intensity (K) from (a) CLAUS and (b) C192AM4-PD

for 1985–2008, and (c) the difference of (b) minus (a). Crosses indicate where the sample size

is smaller than 100.

FIG. 8. Observed (CLAUS; black) and simulated (C192AM4-PD; blue) probability density distribution of MCS

intensity (K) for (a) Africa and (b) the west Pacific. The mean and median (K) are listed.
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correlated. Here, we examine howMCS size or intensity varies

with duration. Note that the size and intensity of an individual

event are averaged over its entire life cycle, and the results are

qualitatively similar if the maximum size or intensity is used

instead. The duration–size relationship is illustrated in Fig. 11.

Two metrics, namely the mean and the 95th percentile sizes of

the events falling into a specific duration bin, are used to

evaluate the dependence of MCS size on duration. The 95th

percentile size enables one to examine the behaviors of com-

paratively large MCSs. The observations show a strong corre-

lation between MCS duration and size; longer-lived MCSs are

generally larger. This is consistent with the study by Machado

et al. (1998), in which a nearly linear relationship between the

average MCS radius and its life cycle was found over the

Americas. The normalized rate of change is 4.4% increase in

size per 1-h increase in duration (P , 0.001) over Africa, and

4.7% over the western Pacific (P , 0.001). The numbers re-

main almost unchanged for the 95th percentile size. The model

performance diverges over the two regions, with an excellent

agreement with the observations over Africa. The large posi-

tive bias in MCS size over west Pacific makes it difficult to

compare directly with the observations, especially for the 95th

percentile size. The strong duration–size relationship is clearly

present in the simulation, and the normalized rates of change

are within a factor of 2. Overall, our results indicate that the

dependence of MCS size on duration is robust throughout the

tropics at an average rate of about 4% increase in size per 1-h

increase in duration.

The same method enables us to explore the relationship

between MCS intensity and size. The brightness temperature

FIG. 9. As in Fig. 7, but for MCS size (104 km2).

FIG. 10. As in Fig. 8, but for MCS size.
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of most MCS spans over a range of 213–233K in both the ob-

servation and model simulations, which is divided into 10

evenly placed bins. A significant negative correlation between

brightness temperature and size holds for the observations and

simulations alike, meaning that stronger MCSs (lower bright-

ness temperature) tend to be larger (Fig. 12). The observed

rate of change is 13.0% decrease in size per 1K increase in

intensity over Africa, and 16.0% over the west Pacific. The

values are almost the same for the 95th percentile size. Both

metrics are followed closely by the model.

d. Future projection

It has been shown that C192AM4 is skillful at simulating the

observed main characteristics of tropical MCSs, lending cre-

dence to its utility in studying the response of MCS statistics to

global warming and implications for weather extremes.

Figure 13 shows the projected track density of tropical MCSs

based on the C192AM4-FU simulation and its difference from

C192AM4-PD (Fig. 2b). Although the spatial structure re-

mains the same in the warming case, there are distinct changes

on the regional scale. The occurrences over tropical land such

FIG. 11. Relationship between MCS duration (h) and size (104 km2) for (a) Africa and (b) the west Pacific.

Individual events are binned based on durationwith an interval of 3 h. The lines with crossmarkers are for themean

size, and the lines with solid dots are for the 95th percentile size. The dashed lines are the best linear fits. The

normalized rates of change (% per hour) are listed for the mean and 95th percentile size.

FIG. 12. As in Fig. 11, but for the relationship between MCS intensity (K) and size (104 km2).

5666 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 09/22/21 07:11 PM UTC



as Africa and the tropical Americas are projected to decrease.

In comparison, the signals over ocean are less robust. We also

contrast the C192AM4-4K and C192AM4-CL simulations to

help rationalize the effects of uniform versus spatially varying

warming. As illustrated in Fig. 14, the idealized uniform

warming case shares many similarities with the realistic

warming case. Most notably, the MCS occurrence is reduced

almost everywhere over tropical land in the uniform warming

case, with significant implications for the continental hydro-

logical extremes.

Overall, the total number of tropical MCSs decreases by

3.0% per 1K warming in C192AM4-FU. The decrease is more

prominent over land (5.6%) than over ocean (1.6%). The

uniform 4-K warming experiment yields similar results. The

reduction in MCS number is 1.6% per kelvin for the entire

tropics (5.4% over land and 0.5% over ocean), and is primarily

due to the decrease in genesis number. Any change in MCS

duration, intensity, or size is small in both pairs of experiments.

The projected reduction in MCS number in the warming sce-

nario could be associated with the decreased convective mass

FIG. 13. (a) Track density of tropical MCSs (number per 18 3 18 area per month) based on

C192AM4-FU. (b) The difference (number per 18 3 18 area per month per kelvin) between

C192AM4-FU and C192AM4-PD (Fig. 2b) normalized by the global mean temperature

change (the former minus the latter). Black dots in (b) indicate where the results are statis-

tically significant at the 95% confidence level based on a 1000-fold resample bootstrapping

method.

FIG. 14. Track density of tropical MCSs (number per 18 3 18 area per month) based on

(a) C192AM4-CL and (b) C192AM4–4K (Fig. 2b), and (c) the difference of (b) minus

(a) normalized by the global mean temperature change. Black dots in (b) indicate where the

results are statistically significant at the 95% confidence level based on a 1000-fold resample

bootstrapping method.
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flux (Held and Soden 2006), while more needs to be done to

better understand the disparity between land and ocean.

4. Discussion and conclusions

To examine the potential impacts of threshold choices on

identifying tropical MCSs, we perform three sensitivity tests

using different thresholds, namely a smaller Tb (228K), a

larger minimum area coverage (10 000 km2), and a larger

overlapping fraction (25%), as in Huang et al. (2018). They are

compared with the results based on the default parameters

(i.e., brightness temperature of 233K, minimum area coverage

of 5000 km2, and overlapping fraction of 15%). It is found that

the spatial distribution of tropical MCSs remains virtually un-

changed (not shown). The total number of identified MCSs is

most sensitive to the choice of minimum area threshold. For

example, using a minimum area threshold of 10 000 km2 results

in a reduction of 10% in the total number for the observations.

This is also true to similar extents for all simulations. The dif-

ferences are nonnegligible, but do not change the main

conclusions.

The simulated OLR in C192AM4-PD is compared with the

CERES EBAF OLR as well as the NOAA Interpolated OLR

for the overlapping period of 2000–14 (Fig. 15). The simulated

tropical-mean OLR is 258.4Wm22, which is close to CERES

EBAF (260.5Wm22). This is understandable as the model’s

radiative balance was tuned specifically against CERES. Yet,

CERES is substantially larger than the NOAA interpolated

OLR (251.4Wm22). There is also appreciable difference be-

tween AVHRR and CERES. Although CERES has been

validated extensively by comparing with ground-based mea-

surements over land and ocean, uncertainties may still persist.

Although an objective assessment of the different observa-

tional datasets is beyond the scope of this study, we stress that

the underestimation of the total MCS genesis number may be

at least partly due to the model-simulated OLR being too high.

The underestimation of MCSs intensity, especially over trop-

ical land, may be an indication of the model’s deficiency in

simulating deep convections. In other words, the simulated

MCSs are less penetrative than observed.

Besides model resolutions, convective parameterizations

also play a central role in simulating tropical transients,

FIG. 15. Spatial distribution of time-average OLR (W m22) based on (a) C192AM4-PD

simulations, (b) CERES EBAF OLR, and (c) NOAA Interpolated OLR during the over-

lapping period of 2000–14. (d),(e) The differences of (a) minus (b) and (a) minus (c),

respectively.

5668 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 09/22/21 07:11 PM UTC



including MCSs. The deep convection scheme used in AM4 is

less penetrative than those in its predecessors (AM2 andAM3)

mainly due to more efficient lateral mixing (Zhao et al. 2018a).

As a result, the large-scale fraction of the total tropical

precipitation, a quantitative measure of how active a cumulus

parameterization is, in AM4 (;30%) is substantially higher.

This generally favors more active tropical transients. Note

that a 60-km grid Weather Research and Forecasting (WRF)

Model, equipped with a standard Betts–Miller convective pa-

rameterization and an elementary mesoscale parameteriza-

tion, also produces extensive large-scale or resolved rainfall

(Moncrieff and Liu 2006). The current study, however, does

not directly address the relative importance of model resolu-

tions versus convective parameterizations in simulating the

tropical MCSs.

In summary, we use a moderately high-resolution AM4

model (C192AM4) to study the response of tropical MCSs to

global warming. By comparing with the CLAUS observational

dataset during 1985–2008, the historical simulation is shown to

capture the key tropical MCS feature including the spatial

distribution, seasonality, interannual variability, duration, in-

tensity, and size. Although the total number of tropicalMCSs is

well simulated (the mean bias is less than 1%), the model

overestimates MCS duration and size over west Pacific.

Nonetheless, it can reproduce the strong relationship between

duration (intensity) and size. The two sets of perturbations

experiments (realistic and uniform warming) give rise to sim-

ilar features in MCS change, the most prominent one being a

reduction in the occurrence of MCSs over tropical land (5.7%

and 5.4%, respectively). It is important to assess the robustness

of these results in fully coupled models as the current work is

hindered by the lack of air–sea interaction in the AMIP-type

simulations.

Much remains to be understood about the effects of MCSs

across scales, including how they operate in state-of-the-art

GCMs. As highlighted by Moncrieff et al. (2017), realistic

representation of the atmospheric water cycle, a major climate

science challenge, involves complex and nonlinear interactions

from the microscale to global scale. Realistic surface rainfall in

GCMs is crucial for coupling the atmosphere to land and ocean

surface with implications for society, ecology, and beyond.As a

first step, we analyze theMCS-related precipitation in both the

observation and C192AM4 simulations. Figure 16 shows that

the observed precipitation associated with MCSs largely re-

sembles its long-term mean pattern, but with a much larger

magnitude. Both the mean pattern and the portion related to

the MCSs are well captured by the model. It should be pointed

out that these results, based on daily records, may be biased

low as coarse temporal resolutions tend to smooth out the

precipitation maxima associated with MCSs.
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